资源类型

期刊论文 309

会议视频 5

会议信息 1

年份

2023 36

2022 33

2021 29

2020 22

2019 24

2018 16

2017 16

2016 12

2015 7

2014 38

2013 12

2012 6

2011 8

2010 14

2009 8

2008 11

2007 12

2006 1

2005 1

2003 1

展开 ︾

关键词

渗透汽化 5

膜分离 5

吸附 4

绿色化工 4

反渗透 3

纳滤 3

双极板 2

反渗透膜 2

气体分离 2

氧化石墨烯 2

水处理 2

水安全 2

油水分离 2

耐氯性 2

聚偏氟乙烯 2

聚酰胺 2

膜材料 2

超滤 2

重金属废水 2

展开 ︾

检索范围:

排序: 展示方式:

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

《能源前沿(英文)》 2010年 第4卷 第4期   页码 443-458 doi: 10.1007/s11708-010-0127-5

摘要: Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

关键词: fuel cell     direct ethanol fuel cells     anion-exchange membrane     ethanol oxidation reaction     oxygen reduction reaction     cell performance    

Tetrazole tethered polymers for alkaline anion exchange membranes

Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 306-310 doi: 10.1007/s11705-017-1690-7

摘要: Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.

关键词: anion exchange membrane     fuel cell     phase separation     tetrazole    

Control strategies for disinfection byproducts by ion exchange resin, nanofiltration and their sequential

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1725-x

摘要:

● Effects of AER adsorption and NF on DBP precursors, DBPs, and TOX were examined.

关键词: Disinfection byproducts     Control     Anion exchange resin     Nanofiltration     Cytotoxicity    

Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption

Qing ZHOU, Mengqiao WANG, Aimin LI, Chendong SHUANG, Mancheng ZHANG, Xiaohan LIU, Liuyan WU

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 412-419 doi: 10.1007/s11783-013-0483-6

摘要: A novel hyper-crosslinked resin (MENQ) modified with an anion exchange group was prepared using divinylbenzene (DVB) and methyl acrylate (MA) as comonomers via four steps: suspension polymerization, post-crosslinking, ammonolysis and alkylation reactions. The obtained resin had both a high specific surface area (793.34 m ·g ) and a large exchange capacity (strong base anion exchange capacity, SEC: 0.74 mmol·g , weak base anion exchange capacity, WEC: 0.45 mmol·g ). XAD-4 was selected as an adsorbent for comparison to investigate the adsorption behavior of tetracycline (TC) and humic acid (HA) onto the adsorbents. The results revealed that MENQ could effectively remove both TC and HA. The adsorption capacity of XAD-4 for TC was similar to that of MENQ, but XAD-4 exhibited poor performance for the adsorption of HA. The adsorption isotherms of TC and HA were well-fitted with the Freundlich model, which indicated the existence of heterogeneous adsorption through cation-π bonding and π–π interactions. The optimal solution condition for the adsorption of TC was at a pH of 5–6, whereas the adsorption of HA was enhanced with increasing pH of the solution.

关键词: high surface area     adsorption     anion exchange     micropollutant     dissolved organic matters    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Preparation and characterization of EVAL hollow fiber membrane adsorbents filled with cation exchange

Fengli ZHANG, Yuzhong ZHANG, Hong LI, Guangfen LI,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 462-467 doi: 10.1007/s11705-009-0011-1

摘要: EVAL hollow fiber membrane adsorbents filled with powder D061-type cation exchange resin were prepared through dry-wet spinning process, using hydrophilic copolymer EVAL as the fiber substrate. The microstructures of the membrane adsorbents were observed, and the pure water fluxes, BSA rejection, and static adsorption capacities of membrane adsorbents for BSA were measured. The effect of the resin-filled content on membrane performance has been discussed. The results showed that EVAL hollow fiber membrane adsorbents filled with D061-type cation exchange resins had good adsorption capacity, and the adsorption capacity increased with the quantity of the resin-filled content. The static protein adsorption capacity was 77.14 mg BSA/g membrane adsorbents when D061 resin loading content was 65% at pH 4.5.

关键词: substrate     copolymer EVAL     exchange     EVAL hollow     resin-filled content    

Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells

Ruiqing Wang, Xiaolan Cao, Sheng Sui, Bing Li, Qingfeng Li

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 364-375 doi: 10.1007/s11705-021-2052-z

摘要: The platinum nanowires have been verified to be a promising catalyst to promote the performance of proton exchange membrane fuel cells. In this paper, accurately controlled growth of nanowires in a carbon matrix is achieved for reducing Pt loading. The effects of formic acid concentration and reaction temperature on the morphology and size of the Pt nanowires, as well as their electrochemical performances in a single cell, are investigated. The results showed that the increase in the formic acid concentration results in a volcano trend with the length of Pt nanowires. With increasing reduction temperature, the diameter of Pt nanowires increases while Pt particles evolve from one-dimensional to zero-dimensional up to 40 °C. A mechanism of the Pt nanowires growth is proposed. The optimized Pt nanowires electrode exhibits a power density (based on electrochemical active surface area) 79% higher than conventional Pt/C one. The control strategy obtained contributes to the design and control of novel nanostructures in nano-synthesis and catalyst applications.

关键词: Pt nanowires     morphology     structure control     in situ growth mechanism     proton exchange membrane fuel cells    

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 299-309 doi: 10.1007/s11708-017-0495-1

摘要: A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm and a mass activity of 0.59 A/mg at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm operating on H /O and 700 MW/cm operating on H /Air (CO -free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/Vulcan catalyst also exhibited high stability during a short-term, AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improvement over most AEMFCs reported in the literature to date.

关键词: alkaline exchange membrane (AEM)     fuel cell     Pd-Cu     oxygen reduction     high performance     water    

Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1616-1

摘要:

● Present a general concept called “salinity exchange”.

关键词: Desalination     Potable water reuse     Ion-exchange membrane     Salinity gradient energy     Wastewater discharge    

the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer for proton exchangemembrane fuel cells

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 123-133 doi: 10.1007/s11708-022-0849-1

摘要: High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.

关键词: proton exchange membrane fuel cells (PEMFCs)     non-precious metal catalyst (NPMC)     cathode catalyst layer (CCL)     local and bulk oxygen transport resistance    

reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchangemembrane fuel cells

《能源前沿(英文)》 doi: 10.1007/s11708-023-0907-3

摘要: Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.

关键词: oxygen reduction electrocatalysis     Pt single-atom catalysts     conventional Pt-based catalysts     design thoughts and synthesis     metal-support interactions    

Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel

ZHUGE Weilin, ZHANG Yangjun, LAO Xingsheng, CHEN Xiao, MING Pingwen

《能源前沿(英文)》 2007年 第1卷 第3期   页码 305-310 doi: 10.1007/s11708-007-0044-4

摘要: Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management. A three-dimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory. The reactant gas flow, diffusion, and chemical reaction as well as the liquid water transport and phase change process are modeled. Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted. Results show that liquid water distributes mostly in the cathode, and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion. The simulation results agree well with experimental data.

关键词: diffusion     gas/liquid two-phase     management     exchange     transfer    

Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel

Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 695-701 doi: 10.1007/s11705-019-1838-8

摘要: The modification of Pt/C catalyst by using ionic liquids to improve their catalyst activities has been reported by many researchers, but their practical behavior in operating fuel cells is still unknown. In this work, we study the ionic liquid modified Pt/C nanoparticle catalysts within cathodes for proton exchange membrane fuel cells. The influence of the ionic liquid amount, adsorption times and dispersing solvents are investigated. The experiment results show the best performance enhancement is achieved through two-time surface modification with 2 wt-% ionic liquid solution. The mechanisms are explored with the attribution to the high oxygen solubility in the ionic liquid enabling an improved oxygen diffusion in micropores and to good hydrophobicity facilitating water expelling from the active sites in fuel cell operation.

关键词: ionic liquid     PEMFC     electrode     oxygen reduction reaction     electrocatalyst     adsorption    

acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared

《化学科学与工程前沿(英文)》   页码 1616-1622 doi: 10.1007/s11705-022-2183-x

摘要: Adsorptive separation of acetylene/carbon dioxide mixtures by porous materials is an important and challenging task due to their similar sizes and physical properties. Here, remarkable acetylene/carbon dioxide separation featuring a high dynamic breakthrough capacity for acetylene (4.3 mmol·g–1) as well as an ultralow acetylene regeneration energy (29.5 kJ·mol–1) was achieved with the novel TiF62–-pillared material ZU-100 (TIFSIX-bpy-Ni). Construction of a pore structure with abundant TiF62– anion sites and pores with appropriate sizes enabled formation of acetylene clusters through hydrogen bonds and intermolecular interactions, which afforded a high acetylene capacity (8.3 mmol·g–1) and high acetylene/carbon dioxide uptake ratio (1.9) at 298 K and 1 bar. Moreover, the NbO52– anion-pillared material ZU-61 investigated for separation of acetylene/carbon dioxide. In addition, breakthrough experiments were also conducted to further confirm the excellent dynamic acetylene/carbon dioxide separation performance of ZU-100.

关键词: adsorption     acetylene/carbon dioxide separation     dynamic capacity     anion-pillared hybrid material    

基于一维纳米结构阵列的质子交换膜燃料电池电极设计的研究进展 Review

杜尚峰

《工程(英文)》 2021年 第7卷 第1期   页码 33-49 doi: 10.1016/j.eng.2020.09.014

摘要:

一维(1D)铂基电催化剂对氧还原反应(ORR)展现出了良好的催化活性和稳定性。基于一维铂基纳米结构阵列的三维(3D)有序电极的研究进展表明,它们在解决现有铂/碳(Pt/C)纳米颗粒电极在高性能质子交换膜燃料电池(PEMFC)的传质特性和持久性挑战方面具有巨大的潜力。本文综述了该领域的最新进展,重点介绍了基于独立的铂纳米线阵列的三维有序结构电极,讨论了纳米结构薄膜(NSTF)催化剂以及沉积在聚合物纳米线、碳和二氧化钛纳米管阵列上的铂基纳米颗粒电极,并回顾了铂基纳米管阵列电极的研究进展。本文指出了一维催化剂纳米结构的尺寸、表面性质和分配控制的重要性。最后,讨论了一维纳米结构阵列电极在增大电化学比表面积(ECSA)和氧传质阻力定量研究方面面临的挑战和未来的发展机遇。

关键词: 质子交换膜燃料电池(PEMFC)     电极     一维(1D)     氧还原反应(ORR)     催化剂     有序化    

标题 作者 时间 类型 操作

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

期刊论文

Tetrazole tethered polymers for alkaline anion exchange membranes

Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu

期刊论文

Control strategies for disinfection byproducts by ion exchange resin, nanofiltration and their sequential

期刊论文

Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption

Qing ZHOU, Mengqiao WANG, Aimin LI, Chendong SHUANG, Mancheng ZHANG, Xiaohan LIU, Liuyan WU

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Preparation and characterization of EVAL hollow fiber membrane adsorbents filled with cation exchange

Fengli ZHANG, Yuzhong ZHANG, Hong LI, Guangfen LI,

期刊论文

Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells

Ruiqing Wang, Xiaolan Cao, Sheng Sui, Bing Li, Qingfeng Li

期刊论文

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

期刊论文

Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for

期刊论文

the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer for proton exchangemembrane fuel cells

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

期刊论文

reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchangemembrane fuel cells

期刊论文

Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel

ZHUGE Weilin, ZHANG Yangjun, LAO Xingsheng, CHEN Xiao, MING Pingwen

期刊论文

Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel

Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du

期刊论文

acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared

期刊论文

基于一维纳米结构阵列的质子交换膜燃料电池电极设计的研究进展

杜尚峰

期刊论文